Understanding Torque Converters

The torque converter is one of the most misunderstood – or, perhaps, non-understood – parts of the power train. Torque converters are sealed units; their innards rarely see the light of day, and when they do, they're still pretty hard to figure out! This article will take you on a guided tour of the torque converter from front to back (well, technically, we'll go back to front), and help you to understand how the parts work together.

Let's start with a little theory. The torque converter in an automatic transmission serves the same purpose as the clutch in a manual transmission. The engine needs to be connected to the rear wheels so the vehicle will move, and disconnected so the engine can continue to run when the vehicle is stopped. One way to do this is to use a device that physically connects and disconnects the engine and the transmission – a clutch. Another method is to use some type of fluid coupling, such as a torque converter.

Imagine you have two fans facing each other. Turn one fan on, and it will blow air over the blades of the second fan, causing it to spin. But if you hold the second fan still, the first fan will keep right on spinning.

That's exactly how a torque converter works. One "fan," called the impeller, is connected to the engine (together with the front cover, it forms the outer shell of the converter). The other fan, the turbine, is connected to the transmission input shaft. Unless the transmission is in neutral or park, any motion of the turbine will move the vehicle.

Instead of using air, the torque converter uses a liquid medium, which cannot be compressed – oil, otherwise known as transmission fluid. The spinning impeller pushes the oil against the turbine, causing it to spin. But if the turbine is held still (the car is stopped with the brakes applied) the impeller can keep right on spinning. Release the brakes, and the turbine is free to turn. Step on the accelerator and the impeller will spin faster, pushing more oil against the blades of the turbine and making it spin faster.

Once the oil has been pushed against the turbine blades, it needs to get back to the impeller so it can be used again. (Unlike our fan analogy, where we have a

room full of air, the transmission is a sealed vessel that only holds so much oil.) That's where the stator comes in.

The stator is a small finned wheel that sits between the impeller and the turbine. The stator is not attached to either the turbine or the impeller – it freewheels, but only in the same direction as the other parts of the converter (a one-way clutch ensures that it can only spin in one direction). When the impeller spins, the moving oil pushes against the fins of the stator. The one-way clutch keeps the stator still, and the fins redirect the oil back to the impeller. As the turbine speeds up, oil begins to flow back to the impeller on its own (a combination of the turbine's design and centrifugal force). The oil now pushes on the back side of the stator's fins, and the one-way clutch allows it to spin. Its job now done, the stator spins freely and doesn't affect oil flow.

Because there is no direct connection in the torque converter, the impeller will always spin faster than the turbine – a factor known as "slippage." Slippage needs to be controlled; otherwise the vehicle might never move. That's where the stall speed comes in. Let's say a torque converter has a stall speed of 2,500 RPM. If the vehicle isn't moving by the time the engine (and therefore the impeller) reaches 2,500 RPM, one of two things will happen: either the vehicle will start to move, or the engine RPM will stop increasing. (If the vehicle won't move by the time the converter reaches the stall speed, either it's overloaded or the driver is holding it with the brakes.)

The stall speed is a key factor, because it determines how and when power will be delivered to the transmission under all conditions. Drag racing engines produce power at high RPM, so drag racers will often use a converter with a high stall speed, which will slip until the engine is producing maximum power. Diesel trucks put out most of their power at low RPM, so a torque converter with a low stall speed is the best way to get moving with a heavy load. (For more information, see "Understanding Stall Speed".)

And now we get to one of the best-kept performance secrets: by altering the design of the torque converter, it is possible to tune the stall speed to match an engine's power curve.

Torque converter slippage is important during acceleration, but it becomes a liability once the vehicle reaches cruising speed. That's why virtually all modern torque converters use a lock-up clutch.

The purpose of the lockup clutch is to directly connect the engine and the transmission once slippage is no longer needed. When the lockup clutch is engaged, a plate attached to the turbine is hydraulically pushed up against the front cover (which, you will recall, is connected to the impeller), creating a solid connection between the engine and transmission. Having the engine and transmission directly connected lowers the engine speed for a given vehicle speed, which increases fuel economy.

If a vehicle has a heavy enough load, its possible for the lockup clutch to slip, which can cause excessive heat and wear. How can the clutch be prevented from slipping? Since the converter clutch is held in place by oil pressure, it’s possible to increase the pressure for a firmer lock, though too much pressure can damage the transmission's oil seals. Another way is to use a multi-element clutch, which sandwiches an additional layer of friction material between the clutch plate and the front cover. A third method is to use better material on the clutch face a fourth is to increase the clutch surface. The ASNU Taipan Torque Converter uses the last two methods, where applicable. Its clutch surface is lined with a carbon-ceramic material, which is finely etched to allow oil to drain away during lockup. This improves the lockup clutch holding power. On Dodge applications, the total clutch area is increased by 33% too.

What other ways are there to improve a torque converter? We've already discussed the use of a tuned stall speed and a more durable lockup clutch. Another area that can be improved is the front cover, which is the side of the converter that faces (and is attached to) the engine's flywheel or flex plate.

Since the front cover connects directly to the engine, it is subject to incredible amounts of stress. Many stock torque converters use a stamped steel front cover because they cost less, but under high power loads they can bend or deform. The solution is to use a billet front cover.

Technically speaking, a billet part is something that is machined from a solid chunk of material. Some torque converter manufacturers use a solid disc and weld it to the sidewall, while others simply weld a reinforcement ring into the stock stamped-steel cover. This compromises the cover's strength and can cause it to warp under load. The strongest covers are precision-machined from a single piece of billet steel, which is then welded to the impeller to form the outer shell. So as you can see, the torque converter isn't just a "little black box." It's a complex device that, if properly tuned, can have a tremendous impact on your vehicle's performance, economy and durability, and turn your automatic from a "slush box" into a powerhouse!